Asymptotic properties of solutions to second-order difference equations
نویسندگان
چکیده
منابع مشابه
Asymptotic stability and asymptotic solutions of second-order differential equations
We improve, simplify, and extend on quasi-linear case some results on asymptotical stability of ordinary second-order differential equations with complex-valued coefficients obtained in our previous paper [G.R. Hovhannisyan, Asymptotic stability for second-order differential equations with complex coefficients, Electron. J. Differential Equations 2004 (85) (2004) 1–20]. To prove asymptotic stab...
متن کاملBounded Solutions to Nonhomogeneous Linear Second-Order Difference Equations
By using some solvability methods and the contraction mapping principle are investigated bounded, as well as periodic solutions to some classes of nonhomogeneous linear second-order difference equations on domains N0, Z \N2 and Z. The case when the coefficients of the equation are constant and the zeros of the characteristic polynomial associated to the corresponding homogeneous equation do not...
متن کاملError Bounds for Asymptotic Solutions of Second-Order Linear Difference Equations II: The First Case
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss in detail the error bounds for asymptotic solutions of second-order linear difference equation yn 2 n p anyn 1 n q bnyn 0, where p and q are integers, an and bn have asymp...
متن کاملAsymptotic Properties of Solutions of Nonautonomous Difference Equations
Asymptotic properties of solutions of difference equation of the form ∆xn = anφn(xσ(n)) + bn are studied. Conditions under which every (every bounded) solution of the equation ∆yn = bn is asymptotically equivalent to some solution of the above equation are obtained. Moreover, the conditions under which every polynomial sequence of degree less than m is asymptotically equivalent to some solution...
متن کاملPeriodic Solutions of Second Order Nonlinear Functional Difference Equations
The development of the study of periodic solution of functional difference equations is relatively rapid. There has been many approaches to study periodic solutions of difference equations, such as critical point theory, fixed point theorems in Banach spaces or in cones of Banach spaces, coincidence degree theory, KaplanYorke method, and so on, one may see [3-7,11,13-15] and the references ther...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2020
ISSN: 1303-6149
DOI: 10.3906/mat-1908-69